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Abstract. The Hilbert space of one-photon states is introduced and used for an investigation 
of some basic principles of squeezing. Regarding the one-photon space as the underlying 
structure of the fields, we introduce parametrisations that simplify calculations considerably, 
and discuss how phase sensitivity, characteristic for squeezing, reveals itself in the one- 
photon space. 

1. Introduction 

The quantum theory of light has always drawn benefit from using descriptions that, 
besides fulfilling the principles of quantum mechanics, also bear a close resemblance 
to classical pictures. Perhaps the most well known example is that of coherent states 
(Glauber 1963), reproducing classical behaviour in the limit of strong fields. Other 
examples with increasing importance for the description of amplification processes 
(Stenholm 1986) are the various characteristic and distribution functions, as they are 
often compared with probability functions on a classical phase space (their properties 
may deviate considerably from classical probability functions). 

A state or a process is termed non-classical if some conditions are violated that 
would have been obeyed by a classical field. This violation can often be ascribed to 
the commutator [ a k ,  a ; ]  = I ( a k  and a: are the operators that annihilate and create a 
quantum of energy hwk in the electromagnetic field mode labelled by k ) ,  and therefore 
stems from the discreteness-or the particle nature-of the light field. 

In spite of this observation little attention is paid to the importance of the one-photon 
states as ‘generators’ of the complete set of field states in quantum optics. In this way 
quantum optics differs from the mathematical description of quantum fields where the 
one-particle states play a prominent role (Bargmann 1961). 

The one-particle state-the photon-is the fundamental basis for the non-classical 
behaviour of light, and in this paper we shall construct the field theory from the 
one-photon states. This will be done in 0 2 and is of course a not very complicated 
task since it already exists, and 0 2 may therefore be seen as a presentation of the 
notation and the way of thinking for this description. At the end of the section we 
introduce the Bargmann representation, which is intimately connected to the point of 
departure taken here, and also provides a unique means of calculation. 

In § 3 we consider the squeezed states of light and use the previous section to give 
some simple derivations and interpretations of importance for squeezing. Calculus 
will be kept to a minimum, and for more detailed calculations and mathematical rigour 
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we refer to Slowikowski and Mprlmer (1988, hereafter referred to as I) ,  where some 
of the more mathematical concepts are discussed. 

2. Construction of field theory 

We shall regard one-photon states in uncorrelated modes as orthogonal unit vectors 
in a Hilbert space H with inner product ( 1 ). Denoting the one-photon state in mode 
m by e,, {e,} is an orthonormal basis of H, in which of course only linear combinations 
that are unit vectors bear immediate physical significance as states of one photon. 

We now define product states, states of more than one photon. This demands for 
a definition of multiplication and a multiplicative unit, the vacuum, which we shall 
denote by 0. We shall just write xy for the product of states x and y ,  and we define 
the space of all polynomials 

so= { t0+z a l a 2 . .  . a j / a j  E H, t~ C . 1 
With aj, b in H we extend the definition of ( I ) by 

(010)= 1 

( a l a 2 . .  . aj I b k )  = Sj,Jc!(al  I b)(a,l b )  . . . (aj I b). 
The completion of So with respect to ( I ) is just the usual Fock space, 9, which is 
also a Hilbert space, where again only the unit vectors, I f 1  = (f l f ) " 2  = 1, represent 
physical states. 

Of special importance are the coherent states 
exp(-tlx12) exp(x)=exp(-Slx12) 1 n!-'x" X E  H 

where x o = O  and the factor of normalisation is found from (2.1) and the resulting 

Useful algebraic properties of the coherent states follow from exp(x) exp(y) = 

Iff and g are vectors in 90, so is fg. More generally, to any state f in 9 we assign 
the creation operator a+(f)  through its action a+(f)g=fg on g for which f g E  9. 
When it exists the adjoint of a+(f)  is denoted by a ( f )  and is called annihilation by$ 

The usual creation operators of one quantum of energy, a i ,  are just one example 
(f being e,), and i f f  is some specific polynomial in the e,, then a ' ( f )  is given by 
the same polynomial in the a'(e,). A wide class of operators may be written as 
functions of the one-photon creation and annihilation operators, and may then be 
ordered in different ways using [a(x) ,  a + ( y ) ]  =(xIy)l ,  x, Y E  H. One example is the 
displacement operator 
~ ( z )  = exp(a+(z)-a(z))  = exp(-~izl*)a+(exp(z))a(exp(-z)) Z E H  (2.2) 
a unitary operator that, acting upon the vacuum 0, gives the normalised coherent 
states exp(-f/zI2) exp(z). 

Another class of operators are the number operators n, = a+( e,)a(  e,), the expecta- 
tion values of which give the average number of photons in the mth mode. Eigenstates 
of n, are states with a specific number of photons in the given mode. 

Notice that the construction above in retrospect can be formulated as follows. In 
the space of field states we define a special set of vectors {e,}, each e, being an 
eigenvector for all number operators nkem = Sk,,em. With the usual scalar product these 
vectors define a Hilbert space H = {CPiei Ipi E C} of eigenvectors for the total number 

(exp(x) I exp(y)) = exp((x I Y ) ) .  

exp(x+y),  x, Y E  H* 
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operator N = Z n,. The eigenvalue is 1 ,  and the unit vectors therefore describe 
one-photon states. 

The coherent states give an overcomplete basis for the field states, and any state f 
will therefore be fully determined through its scalar product with all of the coherent 
states, or equivalently (exp( z) If), z E H. Via the identification z = Z Pie, P I  E C, one 
gets in the case of a finite number of modes M that, to each state of the field, (exp( z) 1 f )  
defines a function fB : C M  + C. This is called the Bargmann representation (I  E Segal 
1960 (see Feller 1962), Bargmann 1961, Glauber 1963) and comprises several useful 
analytical properties. 

As a pure consequence of the definition of ( I ) in 9, but of fundamental importance 
for the representation, is 

(2.3) (exp(z> I fg )  = (exp(z) I f)(exp(z) I g).  
This is easily seen from (2.1) and thus says that the Bargmann representation is 
multiplicative: ( f g ) B  =f&+ The functions fB also define a Hilbert space, because 
the Gaussian measure d p  = T - ~  exp(-Z dp ,  d P 2 . .  . dpM allows for the scalar 
product j C ~  d p  f;gB that even makes the Bargmann representation isometric: 

If fB is some specific polynomial or power series in P I  then f is obtained by 
substituting the one-photon states ei for P I .  The Bargmann representation is thus very 
well suited for the approach outlined at the start of this section. Finally, we mention 
that the Bargmann representation directly gives the expansion of a state upon the 
coherent states 

(fI 8) = J C M  d~ fB*gB. 

f = lCM dp f B  exp(z)* (2.4) 

3. Squeezed states of light 

Now we shall address ourselves to a multimode description of squeezed light (for an 
extensive overview of aspects and applications of squeezed light, see Walls and Kimble 
(1987)). 

First we will deal with some operator relations of importance for squeezing. We 
shall first parametrise the squeezed vacuum states, and later the unitary squeeze 
operator, by a special class of operators on the one-photon space, H. These operators 
allow for a kind of separation, implying a simple generalisation of the single-mode 
results, with which we shall make some comparison. Apart from generalisations of 
single-mode results, we have derived the normal order form of the squeeze operator 
and the effect of squeezing upon a coherent state. 

A transformation of operators reveals systematic properties that we shall use to 
derive the infinitesimal generator of squeezing. An essential condition for squeezing 
is phase sensitivity. This lies implicit in our description, and we shall try to extract it 
at the end of the section. 

Consider operators L :  H + H of the type 

L x = C  tm(xlem)em (3 .1)  

8 L = e x p ( - i ~ L ) = Z  ~ ! - ' ( - + A , ) " E  9. (3.2) 

where t, E C and supJt,/ < 1 (Z It,12 coo in the case of infinitely many modes). 
To each L we now assign k L = X  e,(Le,) and 
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det(Z-L2)‘/4SL is a unit vector (Kristensen er a1 1967) and is, since I A L I - I A L  is a 
two-photon state, called a two-photon coherent state, or a squeezed vacuum state. 
Since A M + N  = A M  + A N ,  we get S M + N  = S M S N ,  where M, N, M + N are of the type 
specified above in analogy with the similar result for the ‘one-photon’ coherent states. 

In I we derive the relation 

a(SL)a+(exp(x)) = exp(-t(Lx I x))a+(exp(x))a(exp(-Lx))u(SL). (3.3) 

This provides one of the means for doing calculations with the annihilation operator 
~ ( 8 , ) .  As a direct result the vacuum expectation values of both sides imply 

(exp(z) 18,) = exp(-f(zl Lz)) 

and thus give the coherent-state expansion (2.4) of the squeezed vacuum states; see 
also (3.6). It is easy to show that S L  and R L  are independent of the choice of basis 
(note that L is conjugate linear, x is to the left in the scalar product in (3.1)), but the 
formal description is facilitated and the mathematical structure becomes more promi- 
nent using a basis as in (3.1) with t, ER. Within this basis of eigenmodes R L  is a 
quadratic form without cross terms, and the multimode description is a simple generali- 
sation of the single-mode case. Our notation therefore differs from the usual one 
(Caves 1982), which associates the field with a carrier frequency, 0, and ‘squeezes 
together’ pairs of modes, en+€, en-E. The corresponding operators are easily translated 
into our notation. 

Defining e€+ =2-1’2(en+E * en--E), one gets a+(en+E)af(en-E)  =;(a+’(eE+)- 
a’2(e,-)), the factor 1 playing the same role here as when multiplying R L  in (3.2). 

Yao (1987) gives the following expression for the single-mode squeeze operator: 

S ( [ )  = exp[f([a” - [ * a ’ ) ]  = (sech r)L’2 exp(1tanh r e2ieac2) 

x exp(-n ln(cosh r)) exp(-; tanh r e-2’Ba2). 

Replacing 

( t  real, It1 < l ) ,  this turns into 
2 i B  +2 S, = ( 1  - I ’ ) ’ ’ ~  exp(-ft  e a ) exp(n ln(1- t2)1’2) exp(ft e-2iBa2) 

and, by acting upon vacuum, we immediately get the single-mode version of S L / [ S L I ,  

hereby confirmed to represent the squeezed vacuum vectors. The phase ezie is absorbed 
by a redefinition of the mode, e,,, + eiee,,,. 

It also justifies the following suggestion for the unitary multimode squeeze operator: 

2 1 / 2  + SL = det(Z - L2)1’4a+(SL) exp C ln(1- t,,,) a (e,)a( e,,,) (3.4) 

In the mathematical framework of I (3.4) appears in a natural manner; in particular 
the exp term is an appropriate extension of the linear operator ( I  - L’)”’: H -t H into 
an operator 9-t 9. 

The normal-order form of (3.4) is readily obtained by using the result (the single- 
mode version of which was used in (Fan et a1 1987)) 

exp q,,a+(e,,,)u(e,,,) = :exp C (exp(w,) - l)a+(e,,,)u(e,,,): 
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2 I / 2  
= :exp [exp(ln(l-  t , )  )~]a+(e,)a(e,):  

m 

where the sum Zj  is to be taken over all combinations of j ,  with Z, jm = n. Insertion 
of (3.5) into (3.4) gives the squeeze operator in normal form. Higher-order correlation 
functions in general appear as expectation values of operators like those in (3.5), but 
it is at present unclear whether any direct physical interpretation can be given to (3.5). 

We have hitherto only discussed the squeezed vacuum vectors SLO= 
det(1- L2)1/4SL. Displacement by (2.2) does not change the noise properties, and in 
the literature the term ‘squeezed vector’ embraces all states obtained by first acting 
with SL upon 0 followed by the displacement operator D(z) .  Repeatedly used, (2.3) 
and (3.3) give 

(exp(z) I D ( X ) S L 0 )  

= exp( -$[XI2)  det( I - L2)1/4(exp( z)~a+(exp(x))a(exp(  -x))a+(  SL)lO) 

= det( I - L2)1’4 exp( - lxI2 + (z 1 x) - i ( x  1 Lx) - i( z 1 Lz) + (z I Lx)). (3.6) 

Now (2.4) gives explicitly the coherent-state representation of a squeezed state. In the 
single-mode case this result, by the identification x = a e l r  z = pel ,  I@) = 
exp(-ilP12)lexp(pel)), reduces exactly to the expansion found by Yao (1987). 

In I we derive the action of S ,  upon a coherent state 

S , D ( x ) 0 =  D ( [ I - L ) ( I + L ) - 1 ] 1 ’ 2 x ) S , 0 .  (3.7) 

This is also a standard squeezed state. 

all of the same type as L in (3.1), then 
If a common basis of ‘eigenmodes’ exists for M, N, and if M, N and M + N are 

S M S N  = S ( M + N i ( I + M N i - l .  (3.8) 

K ( L )  = ( I - L )  (I + L ) -  I .  (3.9) 

Both of these results suggest using the operator transform 

Noting that K ( A B ) = ( K ( A ) + K ( B ) ) ( I + K ( A ) K ( E ) ) - I  and K ( K ( L ) ) = L ,  we define A =  
K ( M ) ,  B = K ( N )  and thus rewrite (3.7), 

S,D(X)@ = D( K (  L)’”X)S@ 

and (3.8) 

SK ( A +, B 1 = S,  ( A B ) .  

The first use of the new transform will be to calculate the infinitesimal generator for 
squeezing. 

If L is given by (3.1), A = K(L)  can be written 

Ax = E  {rmp(em, x)em + r;’p(ie,,,, x)iem} (3.10) 
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where r, = (1 - t ,) /( l+ t , )  and p(  , ) is the real scalar product p ( x , y )  = 

The infinitesimal generator of squeezing is now found as follows. We define 
4(<x lY)+(Y I x ) ) .  

A‘x =I r k p ( e , ,  x ) e ,  + rmTp(iem, x)ie ,  7 > 0 .  

A’+” = A‘A”, and we see that & ( A T )  defines a unitary group, the generator being the 
derivative that after some calculation gives 

This is the Hamiltonian that generates a squeezed state, and we get immediately with 
7 = 1  

which is just the expected generalisation of the single-mode result. 
The above calculation was not the only purpose for introducing the operator 

transformation and the real scalar product p (  , ). They both reveal important features 
of the conjugate linear operator L and of squeezing as seen from the one-photon 
viewpoint. The one-photon space, H, is a complex Hilbert space. Due to the mode 
separation (3.1) we can, in this context, look at one mode at a time, a subspace 
isomorphic to the complex plane. States of the field are then, through the Bargmann 
representation, isomorphic to conjugate analytic functions on the complex plane-even 
mixed states may be dealt with, representing the density matrix by distribution functions. 

Figure 1. Uncertainty ellipses for a single-mode field in various states. exp(-+lP1’) exp(pe,)  
is a coherent state, 0 is the vacuum state, S,/IS,I is the squeezed vacuum state, and the 
hatched area denotes a squeezed coherent state (see explanation in the text). 
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The definition of what is real and imaginary in H is now connected to physical 
distinctions, for example between position and momentum in the harmonic oscillator 
case, or in-phase and in-quadrature components of the electromagnetic field. Since 
p(x, ix) = 0 for all x in H, the real scalar product exactly provides the required phase 
sensitivity, and appears naturally when one is dealing with operators exhibiting special 
conjugation properties. In (3.10) A acts as a linear operator on the real vector space 
spanned by the basis {e,,, ie,}, compensating a scaling of the real projection along e,,, 
by the reciprocal scaling of the projection along ie,, a squeezing. 

In the single-mode case we can visualise relation (3.7) by uncertainty ellipses in 
the complex plane (see figure 1). By acting upon exp(-$i/.12) exp(pel), p = b l + i b 2 ,  
SL modifies the field quadrature variances by the factors r, respectively r-I ,  of (3.10), 
and the state obtained is equal to the result of squeezing the vacuum state by S ,  and 
then displacing it by D(/.’e,), /.’= r”2bl  +ir-”2b2. The uncertainty ellipses of states 
obtained from real squeezing parameters ( t  in (3.1)) are all centred on the hyperbola 
going through /.. A rotation of the coordinate axes, equivalent to the use of a complex 
t value, gives a completely different set of hyperbolae, and since the uncertainty ellipses 
now orient along the rotated coordinate axes, the uncertainty product is obviously 
increased in the original coordinate system. 

4. Conclusion 

The theory of squeezed states of light has been reviewed from the extreme non-classical 
viewpoint, the one-photon states. The pertaining product-state description offers 
several computational advances, and relations of importance for squeezing have been 
derived in a straightforward manner. Working within the one-photon space, basis 
transformations and phase-sensitive scaling operations have proved useful at calculat- 
ing and visualising the effect of squeezing. 

References 

Bargmann V 1961 Commun. Pure Appl. Math. 14 187 
Caves C M 1982 Phys. Rev. D 26 1817 
Fan Hong-Yi, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831 
Feller W 1962 Proc. Nafl .  Acad Sci. USA 48 2204 
Glauber R J 1963 Phys. Rev. 131 2766 
Kristensen P, Mejlbo L and Poulsen E T 1967 Commun. Math. Phys. 6 29 
Slowikowski W and M6lmer K 1988 to be published 
Stenholm S 1986 Phys. Scr. T12 56 
Walls D F and  Kimble H J (ed) 1987 J.  Opt. Soc. Am. B 4 1453 
Yao De-Min 1987 Phys. Left. l22A 77 


